
www.manaraa.com

Manetho: Transparent Rollback-Recovery withLow Overhead, Limited Rollback and Fast OutputCommit �Elmootazbellah N. Elnozahy and Willy ZwaenepoelAbstractManetho is a new transparent rollback-recovery protocol for long-running distributedcomputations. It uses a novel combination of antecedence graph maintenance, unco-ordinated checkpointing, and sender-based message logging. Manetho simultaneouslyachieves the advantages of pessimistic message logging, namely limited rollback andfast output commit, and the advantage of optimistic message logging, namely lowfailure-free overhead. These advantages come at the expense of a complex recoveryscheme.Index Terms: Antecedence graph, checkpointing, message logging, rollback-recovery,transparent fault tolerance.1 IntroductionTransparent rollback-recovery is an attractive approach for providing fault tolerance to long-running distributed applications without real-time requirements. Three key performance�This research was supported by NSF Grants CDA-8619893 and CCR-9116343, by IBM Corporation un-der Research Agreement No. 20170041, and by an IBM Graduate Fellowship. The authors are with theDepartment of Computer Science, Rice University, Houston, TX 77251-1892.1



www.manaraa.com

considerations in this approach are failure-free overhead, extent of rollback, and outputcommit latency. During failure-free operation, a rollback-recovery protocol records infor-mation about the computation's execution on stable storage, thereby causing failure-freeoverhead. The system uses this information after a failure to roll the computation backto a consistent state [2]. The system also invokes an output commit algorithm each timethe computation sends a message to the \outside world." The outside world consists of theentities that cannot roll their states back (a line printer, for instance). Because the outputcommit algorithm must ensure that the state from which the message is sent will never berolled back [16], it may introduce latency in sending messages to the outside world.Existing transparent rollback-recovery methods fall into three classes: pessimistic mes-sage logging, optimistic message logging, and consistent checkpointing. These methodsachieve only a subset of the goals of reducing the overhead during failure-free operation,limiting the extent of rollback, and reducing the latency of output commit. Pessimisticmessage logging protocols limit rollback by synchronously logging recovery information onstable storage [1, 12]. A failed process is restored to its state before the failure, and processesthat survive the failure are not rolled back. In addition, no latency is incurred in sendingmessages to the outside world. Synchronous logging of recovery information however resultsin high failure-free overhead, unless special-purpose hardware is used. Optimistic messagelogging protocols [6, 7, 15, 16] reduce failure-free overhead by logging recovery informationasynchronously. Processes that survive a failure may however be rolled back. Further-more, the latency of output commit is higher than in pessimistic message logging since amessage cannot be sent to the outside world without multi-host coordination. Consistentcheckpointing protocols [2, 4, 8, 10, 17, 18] do not cause failure-free overhead, except while a2



www.manaraa.com

consistent checkpoint is being taken. Processes that survive a failure may however be rolledback, and output commit may require taking a multi-host consistent checkpoint, resultingin considerable latency.Manetho is a new transparent rollback-recovery protocol that, unlike existing protocols,simultaneously achieves the goals of low overhead, limited rollback, and fast output commit.It achieves these goals by using an antecedence graph, which records the \happened before" [9]relationship between certain events in the computation, in combination with uncoordinatedcheckpointing and sender-based volatile message logging [5]. Manetho avoids synchronouslogging of recovery information on stable storage most of the time, thereby reducing theoverhead during failure-free operation. Manetho also reduces the latency of output commitby allowing messages to be sent to the outside world without multi-host coordination. Aftera failure, surviving processes are not rolled back, and failed processes are rolled back onlyto their most recent checkpoints. The protocol tolerates an arbitrary number of fail-stopfailures [14], including failures during recovery, and avoids the domino e�ect [13].Manetho's advantages come at the expense of a complex recovery scheme and somelimitations on support for nondeterminism. The expense of recovery should not be a majorconcern in modern systems where failures are expected to be infrequent. Nondeterminism islimited to message receipt or other nondeterministic events that can be e�ciently recordedin the antecedence graph and replayed during recovery.Experience with an implementation of Manetho shows that the overhead of maintainingthe antecedence graph and message logs is small [3]. We concentrate in this paper on theprotocol description and its correctness. Implementation, performance, and scalability areconsidered elsewhere [3]. 3



www.manaraa.com

2 AssumptionsWe assume that the computation consists of a number of fail-stop [14] recovery units (RU s) [16]which communicate only by messages over an asynchronous network. An RU consists of oneor more threads that manipulate the RU 's internal state. Each RU has access to a stablestorage device. A failed RU can be restarted on any available machine.The execution of an RU consists of a sequence of piecewise deterministic state inter-vals [16], each started by a nondeterministic event. Such an event can be 1) the receipt ofa message, 2) an internal nondeterministic event such as a kernel call or a synchronizationoperation between two threads within the same RU , or 3) the creation of the RU .Figure 1 shows the execution of three RU s and their state intervals. A horizontal linerepresents the execution of each RU . An arrow between two horizontal lines denotes a mes-sage, and a vertical bar marks the beginning of each state interval. The notation �pi denotesthe ith state interval of RU p, where i is referred to as the index of �pi . Each applicationmessage has a system-wide unique identi�er.
---� � � � ��� � � � ��J J J J J^ mr1 mq1mp1rqp �q1�r1 �p1�r2�q2�q0�r0�p0

Figure 1 An Example Execution.4



www.manaraa.com

We do not assume that the communication network is reliable: messages may be lost,duplicated, delivered out of order, or arbitrarily delayed. However, we assume that thenetwork is immune to partition.Input received by an RU from the outside world must be saved on stable storage beforethat RU can send a message to another RU or to the outside world, because the outsideworld cannot be relied upon to replay the input during recovery.3 The Antecedence GraphThe antecedence graph (AG) of a state interval �pi , AG(�pi ), is a directed acyclic graph. Itcontains a node representing �pi and a node for each state interval that \happened before" [9]�pi . Figure 2 shows AG(�p1) corresponding to the example of Figure 1.For a state interval created by the receipt of a message, the corresponding AG nodehas two incoming edges: one from the node representing the previous state interval in thereceiving RU and one from the node representing the state interval from which the messagewas sent. The node contains: 1) a type �eld that indicates a message receipt, 2) the identi�erof the receiver, 3) the identi�er of the sender, 4) the index of the created state interval, and5) the unique identi�er of the message. The AG does not contain a copy of the message'sdata.For a state interval created by an internal nondeterministic event, the correspondingAG node has one incoming edge from the node representing the previous state interval ofthe same RU . Such a node contains a �eld that indicates the type of the event and theinformation necessary to replay the event during recovery.5



www.manaraa.com

hhhhhhh --- � � � � � � �*-H H H H H H Hj � � � � � � �*�r1�r0�q0 �q1 �q2 �p1�p0Figure 2 Antecedence Graph of state interval �p1, AG(�p1).4 Failure-Free Operation4.1 Information in Volatile StorageEach RU maintains in volatile memory the AG of its current state interval, and a log thatcontains the data and identi�er of each message it sends. When an RU sends a message, it(conceptually) piggybacks the AG of its current state interval on the message. The receiptof the message starts a new state interval in the receiving RU, and the AG of that stateinterval is constructed from the AG of the previous state interval and the AG piggybackedon the message, as described in Section 3.The sender need not include the completeAG of its current state interval in each message.Instead, incremental piggybacking is used. By de�nition, AG(�pi ) is a proper subgraph ofAG(�pi+1). Each RU q that communicates with p includes with each message sent to p themaximum state interval index j such that the node representing �pj is in q's AG. Later, whenp sends a message to q from some �pi , it appends only AG(�pi )� AG(�pj ).6



www.manaraa.com

4.2 Information on Stable StoragePeriodically, each RU records a checkpoint of its state on stable storage. The checkpoint isnot coordinated with the other RU s in the computation. While recording the checkpoint,the RU also saves the volatile message log and the AG of its current state interval on stablestorage.Occasionally, each RU asynchronously saves the AG of its current state interval on stablestorage. The subgraph on stable storage need not be piggybacked on outgoing messages,avoiding the need to piggyback large AGs. An AG at some RU may be missing one or moresubgraphs, but these missing subgraphs are always available on stable storage.Before sending a message to the outside world, an RU saves the AG of its current stateinterval on stable storage (output commit). No coordination with other RU s is necessary.4.3 Incarnation NumbersBecause of network delay, a message mpi that originates from RU p may arrive at its desti-nation q after p has failed. If q has been noti�ed of p's failure before receiving mpi , q will notbe able to determine whether mpi originated before or after p's failure. This is an instanceof the problem of ordering the perception of failures with respect to messages.To solve this problem, each RU starts a new incarnation [16] at the beginning of eachrecovery. Each incarnation is identi�ed by a monotonically increasing incarnation number,and each message is tagged with the current incarnation number of the sender. When anRU starts the recovery protocol, it reliably informs the other RU s in the computation of itsnew incarnation number before proceeding. Messages tagged with old incarnation numbers7



www.manaraa.com

are rejected.5 Recovery Protocol5.1 OverviewFigure 3 shows the recovery protocol. A recovering RU p restores its state, messagelog, incarnation number, and AG from stable storage. Then, RU p calls the procedureRECOVER, passing as arguments the RU 's identi�er p, the state interval index of thecheckpointed state c, the incarnation number INCNUM , and the set S containing the RU sthat participate in the computation.RU p increments its incarnation number INCNUM and saves it on stable storage. Thegraph G is initialized to the AG that was retrieved from stable storage, AG(�pc ). RU pthen calls the procedure GET AG at each other RU . Messages exchanged for the purpose ofrecovery are out-of-band and do not carry AG information. An end-to-end communicationprotocol is used to ensure reliable remote procedure call delivery.In GET AG at RU q, q �rst saves the AG of its current state interval on stable storage.RU q determines �pk, the most recent state interval of p that has a node in q's AG. Next, qadds k to REJECTVEC , and until q receives a SEND INC call from p (see below), q rejectsany application message (from any sender) whose piggybacked AG contains a node for anystate interval �pi , where i > k. Then, q returns its incarnation number and AG(�pk). Notethat recovering RU s respond to GET AG calls.When a GET AG call returns, p merges the returned AG into G, and includes q's in-carnation number in the incarnation number vector INCVEC . After all GET AG calls have8



www.manaraa.com

procedure RECOVER(p; c; INCNUM ; S)INCNUM  INCNUM + 1;save INCNUM on stable storage;INCVEC [p] INCNUM ;G  AG(�pc );for all q 2 S ; q 6= p do(INQ, AGQ)  remote call at q : GET AG(p);G  G [ AGQ;INCVEC [q] INQ;for all q 2 S ; q 6= p doremote call at q : SEND INC(p, INCVEC);m  max j such that �pj 2 G;STATEINDEX  c;while STATEINDEX � m doexecute up to next event without sendingapplication messages;STATEINDEX STATEINDEX +1;if next event is a receive thenrequest message from sender's log;elsere-execute internal event;return;procedure GET AG(p)save AG on stable storage;k  max j such that �pj 2 AG;REJECTVEC [p] k;return (INCNUM ;AG(�pk));procedure SEND INC (p;PINCVEC)for all s 2 S doINCVEC [s] max(INCVEC [s];PINCVEC[s]);REJECTVEC [p] 1;return; Figure 3 The Recovery Protocol.9



www.manaraa.com

returned, p calls the procedure SEND INC at every other RU, with p and INCVEC as ar-guments. In SEND INC at RU q, q updates its incarnation number vector and removes therestrictions on accepting messages that contain state intervals of p.RU p proceeds to recreate the pre-failure execution up to state interval �pm. Duringrecovery, p requests messages from their senders' logs and re-executes internal events, asnecessary. RU p does not send messages to the outside world or to other RU s, but it storesthe messages that it would have sent in its volatile message log.5.2 CorrectnessWe �rst show that the graph G computed by RECOVER is indeed AG(�pm).Lemma 1 G = AG(�pm).Proof We show that G � AG(�pm) and AG(�pm) � G.G � AG(�pm): Since initially G = AG(�pc ), then 8g 2 G, g 2 AG(�pc ) _ g 2 G� AG(�pc ).Case 1: g 2 AG(�pc ). Since c � m, AG(�pc ) � AG(�pm). Thus g 2 AG(�pm).Case 2: g 2 G�AG(�pc ). 9 q such that in p's GET AG call at q, g 2 AG(�pk). Since k � m,AG(�pk) � AG(�pm). Thus, g 2 AG(�pm).AG(�pm) � G: If c = m then obvious. If c < m, then let q be the RU that returned AG(�pm)to p's GET AG call. If q has the complete graph AG(�pm) in its own AG, then AG(�pm) � G.Otherwise, the returned AG(�pm) must be missing one or more subgraphs. This can happenonly because some other RU s have saved the missing subgraphs on stable storage beforesending the messages that should have included them. These RU s will return the missingsubgraphs during p's GET AG calls, regardless of any failure.10



www.manaraa.com

De�nition 1 �pi is a lost state interval of RU p if and only if �pi occurred during someincarnation v of RU p, and RECOVER at the beginning of incarnation v+1 restores p onlyup to some state interval �pm, where m < i.Lemma 2 After all GET AG calls in p's recovery return, but before p sends any SEND INCcalls, no AG of any RU contains a node representing a lost state interval of p.Proof When p's GET AG call executes at any RU q, no state interval �pi , such thati > m, has a corresponding node in the AG of RU q. After returning p's GET AG call andbefore receiving p's SEND INC call, the use of REJECTVEC prevents RU q from acceptingany message whose piggybacked AG carries a node that represents �pi , where i > m.Because of arbitrary delays, the network may contain a message whose piggybacked AGhas a node that represents a lost state interval of RU p. We show that such a message willbe rejected.Lemma 3 A message whose piggybacked AG contains a node that represents a lost stateinterval of p will be rejected by any RU that receives it.Proof Assume that RU r sends to RU q a message mrj whose piggybacked AG containsa node that represents a lost state interval �pi , i > m. From Lemma 2, mrj cannot originatefrom the current incarnation of r. Hence, mrj must originate from a previous incarnation ofr. There are three cases:Case 1: mrj arrives at q before p's GET AG call executes at q. This is impossible since qwould have returned AG(�pi ) during p's GET AG call, with i > m, a contradiction.11



www.manaraa.com

Case 2: mrj arrives at q after p's GET AG call executes at q, but before p's SEND INCcall executes at q. The message will be rejected because of the use of REJECTVEC as inLemma 2.Case 3: mrj arrives at q after p's SEND INC call executes at q. Because p's SEND INCcall contains the current incarnation number of every RU , q detects that the incarnation ofr tagging mrj is old and rejects it.We next show that despite an arbitrary number of failures, including additional failuresduring recovery, RU p re-executes to the state interval �pm.Lemma 4 8 i; q such that �qi 2 G;AG(�qi ) will remain available at RU q.Proof If q is live when it returns p's GET AG call, then the lemma is true regardlessof any subsequent failures of q, since q saves its AG on stable storage during GET AG.Otherwise, RU q was recovering when it returned p's GET AG call. There are two cases:Case 1: AG(�qi ) is a subgraph of the AG of the current state interval of some live RU rthat returned p's GET AG call. There are three cases:case i: r returned p's GET AG call before q's GET AG call executed at r. Thus, r has savedAG(�qi ) on stable storage. Regardless of future failures of r or q, AG(�qi ) will be returned toq during its GET AG call at r.case ii: r returned p's GET AG call after q's GET AG but before q's SEND INC . ThenAG(�qi ) must have been returned to q's call, since r could not have added AG(�qi ) to its ownAG after q's call, from Lemmas 2 and 3. This is also true if r subsequently fails, because arecovering RU does not accept application messages until it �nishes recovery.12



www.manaraa.com

case iii: r returned p's GET AG call after q's SEND INC call. Lemmas 2 and 3 show that�qi cannot be a lost state, and therefore AG(�qi ) is available at q.Case 2: AG(�qi ) is not a subgraph of the AG of the current state interval of any live RU .Hence, either AG(�qi ) � AG(�pc ), in which case p returns AG(�qi ) during q's GET AG; orp must have received AG(�qi ) from some RU r that was recovering and had AG(�qi ) as asubgraph of its AG on stable storage, in which case both p and q will receive AG(�qi ) fromr, regardless of any subsequent failures of p, q or r.Lemma 5 The recovery protocol restores p up to state interval �pm, despite any other failuresin the system.Proof Construct graph F from G by removing the nodes that represent state intervalseither in live RU s or that occurred prior to the most recent checkpoint of each recoveringRU. Every state interval that has a corresponding node in F will be recreated, since theexecution in each state interval is deterministic. The proof proceeds by induction on thetopological sort of F , which must exist because F is acyclic.Base case: Each node f at level 0 of the topological sort represents the �rst state intervalafter the checkpoint in a recovering RU . If f corresponds to an internal event, it containsthe information necessary to recreate the state interval after restarting the execution fromthe checkpointed state. If f corresponds to a message receipt, then the source of the messagemust be the outside world, a state interval in a live RU , or a state interval that occurredbefore the checkpointed state in a recovering RU , from the construction of the graph F . Inthe �rst case, the message is available on stable storage. In the other two cases, the messageis available in the sender's log and can be replayed.13



www.manaraa.com

Induction hypothesis: Assume that the lemma is true for all nodes at topological level k.Induction step: For each node f at topological level k +1, if f corresponds to an internalevent, then the corresponding state interval is recreated by starting execution from theprevious state interval (which is reconstructed by the induction hypothesis) and using theinformation in f . If f corresponds to a message receipt, then the corresponding state intervalis reconstructed by starting execution from the previous state interval and requesting themessage to be replayed. The message is available either because it was recreated duringrecovery by the induction hypothesis, or because it was available in the log of a sender or onstable storage as in the base case.Lemma 6 The protocol is deadlock-free.Proof No deadlock can occur during the GET AG calls, because recovering RU s returnGET AG calls. Lemma 5 also shows that no deadlock can occur during recreating the stateintervals.The next two lemmas establish limits on the amount of rollback during recovery.Lemma 7 Only one checkpoint for each RU needs be retained on stable storage.Proof Follows immediately from the construction in the proof of Lemma 5, since each RUrestarts from its most recent checkpoint and recovers.Lemma 8 The recovery protocol avoids the domino e�ect.14



www.manaraa.com

Proof A recovering RU rolls back only once and only to its last checkpoint, and no RUneeds to roll back to replay the messages required for recovery of any other RU.We next consider output commit. We show that all state intervals from which output iscommitted will be recovered, and that no output is committed from any lost state interval.Lemma 9 A state interval from which output is committed will be recovered.Proof Before committing output, an RU saves its AG on stable storage. The AG will beavailable despite any subsequent failure, and lemma 5 shows that the state interval can berecovered.Lemma 10 No output is committed from any lost state interval.Proof By contradiction. If output were committed from a lost state interval, then its AGwould have been saved on stable storage, then the state interval could not be lost.De�nition 2 Two distributed computations are equivalent if and only if both produce thesame sequence of output.Theorem 1 A failure-prone computation is equivalent to some failure-free computation thatstarts from the same initial state.Proof Let C be a failure-prone computation. Derive the failure-free computation C 0 fromC by removing failures, recoveries, lost state intervals, and messages rejected either due toold incarnation numbers or due to the use of REJECTVEC . Lemmas 4, 5, 6 and 9 show15



www.manaraa.com

that output sent in C will be sent in C 0. Lemmas 2, 3, and 10 show that no output will besent in C 0 that was not sent in C.We now show that the state intervals constituting C 0 could happen in a failure-freeexecution that starts in the same initial state as C. The proof proceeds by induction on thestate intervals of C 0.Base case: The initial state of each RU occurs in both C and C 0.Induction hypothesis: Assume that the subset of C 0 consisting of all state intervals that\happened before" �pi can occur in a failure-free execution.Induction step: We show that the subset of C 0 consisting of state interval �pi and all stateintervals that \happened before" �pi can occur in a failure-free execution. Consider the statetransition from state interval �pi�1 to �pi in C 0. The execution during �pi�1 is deterministic.Therefore, by replaying the event that created �pi in C, the same transition from �pi�1 to �pioccurs in C 0.6 Garbage CollectionTo reclaim space from the message log, an RU p may decide that every message sent beforesome state interval �pi is to be discarded. From Lemma 7, no RU will roll back beyondits latest checkpoint. Therefore, for each RU q such that p has sent a message to q before�pi , p requests that q take a checkpoint if q has indeed received the message and has nottaken a checkpoint since. In practice, �pi is chosen such that forcing checkpoints is rarelynecessary. After all RU s acknowledge its request, p can safely discard all messages sentbefore �pi . Each RU maintains a list that contains the index of the state interval at each16



www.manaraa.com

other RU before which all messages sent were garbage collected. This list is used to rejectmessages that arrive at their destinations after their copies in their senders' logs have beengarbage collected. We discuss recovery of garbage collection information elsewhere [3].To reclaim the space used by the AG, an RU can discard a node that corresponds to �qi ,if q has taken a checkpoint at state interval �qc , where c � i. By Lemma 7, the information inthat node will no longer be needed during recovery. For the purpose of garbage collection ofAG, RU s occasionally exchange the state interval indexes of their most recent checkpoints.7 Related WorkSeveral systems use message replay for rollback-recovery [1, 5, 6, 7, 11, 12, 15, 16]. Exceptfor the Psync recovery protocol [11], none of these systems use a graph that records the\happened before" relation [9] between certain events. The combination of the antecedencegraph with uncoordinated checkpointing and sender-based volatile message logging allowsManetho to achieve its goals of low failure-free overhead, limited rollback, and fast outputcommit, albeit at the expense of a more complex recovery protocol.Manetho's antecedence graph di�ers from Psync's context graph [11] in that the an-tecedence graph records the order of message receipt within the same RU, while Psync doesnot. The order of message receipt is exactly the information required for message replay dur-ing recovery. The same information can be deduced from the context graph by applying adeterministic ordering �lter. This �lter delays the delivery of each application message untilseveral subsequent application messages are received [11]. Moreover, unlike the antecedencegraph, the context graph requires that each process receives and logs every message ex-17



www.manaraa.com

changed in the system. However, Psync's context graph is meant to support a variety ofapplications, while Manetho's antecedence graph is speci�cally designed for rollback-recovery.8 ConclusionManetho is a new transparent rollback-recovery protocol for long-running distributed com-putations. It achieves the advantages of pessimistic protocols, namely limited rollback andfast output commit, and the advantage of optimistic protocols, namely low overhead duringfailure-free operation. Manetho uses a novel combination of antecedence graph maintenance,uncoordinated checkpointing and sender-based message logging. This reduces overhead byavoiding synchronous logging of recovery information on stable storage most of the time.The latency of output commit is reduced by avoiding multi-host coordination. Sending amessage to the outside world requires only a synchronous write of the local antecedencegraph on stable storage. The protocol tolerates an arbitrary number of fail-stop failures,including additional failures during recovery. After a failure, surviving processes do not rollback, and failed processes roll back only to their most recent checkpoints. These advantagescome at the expense of a complex recovery scheme and some limitations on nondeterminism.References[1] A. Borg, W. Blau, W. Graetsch, F. Herrmann, and W. Oberle. Fault tolerance underUNIX. ACM Transactions on Computer Systems, 7(1):1{24, February 1989.[2] K.M. Chandy and L. Lamport. Distributed snapshots: Determining global states ofdistributed systems. ACM Transactions on Computer Systems, 3(1):63{75, February1985.[3] E.N. Elnozahy and W. Zwaenepoel. Manetho: A low overhead rollback-recovery systemwith fast output commit. Technical Report TR91-152, Rice University, March 1991.18



www.manaraa.com

[4] F. Jahanian and F. Cristian. A timestamp-based checkpointing protocol for long-liveddistributed computations. In Proceedings of the 10th Symposium on Reliable DistributedSystems, pages 12{20, Bologna, Italy, September 1991.[5] D.B. Johnson and W. Zwaenepoel. Sender-based message logging. In Proceedings of the17th International Symposium on Fault-Tolerant Computing, pages 14{19, June 1987.[6] D.B. Johnson and W. Zwaenepoel. Recovery in distributed systems using optimisticmessage logging and checkpointing. Journal of Algorithms, 11(3):462{491, September1990.[7] T. Juang and S. Venkatesan. Crash recovery with little overhead. In Proceedings of the11th International Conference on Distributed Computing Systems, pages 454{461, May1991.[8] R. Koo and S. Toueg. Checkpointing and rollback-recovery for distributed systems.IEEE Transactions on Software Engineering, SE-13(1):23{31, January 1987.[9] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Commu-nications of the ACM, 21(7):558{565, July 1978.[10] K. Li, J.F. Naughton, and J.S. Plank. Checkpointing multicomputer applications. InProceedings of the 10th Symposium on Reliable Distributed Systems, pages 1{10, October1991.[11] L.L. Peterson, N.C. Bucholz, and R.D. Schlichting. Preserving and using context in-formation in interprocess communication. ACM Transactions on Computer Systems,7(3):217{246, August 1989.[12] M.L. Powell and D.L. Presotto. Publishing: A reliable broadcast communication mech-anism. In Proceedings of the 9th ACM Symposium on Operating Systems Principles,pages 100{109, October 1983.[13] B. Randell. System structure for software fault tolerance. IEEE Transactions on Soft-ware Engineering, SE-1(2):220{232, June 1975.[14] R.D. Schlichting and F.B. Schneider. Fail-stop processors: An approach to designingfault-tolerant computing systems. ACM Transactions on Computer Systems, 1(3):222{238, August 1983.[15] A.P. Sistla and J.L. Welch. E�cient distributed recovery using message logging. InProceedings of the 8th Annual ACM Symposium on Principles of Distributed Computing,August 1989.[16] R.E. Strom and S.A. Yemini. Optimistic recovery in distributed systems. ACM Trans-actions on Computer Systems, 3(3):204{226, August 1985.[17] K.-L. Wu and W.K. Fuchs. Recoverable distributed shared memory. IEEE Transactionson Computers, 39(4):460{469, April 1990.[18] K.-L Wu, W.K. Fuchs, and J.H. Patel. Error recovery in shared memorymultiprocessorsusing private caches. IEEE Transactions on Parallel and Distributed Systems, 1(2):231{240, April 1990. 19


